Preliminary communication

Isomerism in the μ, μ 'diorganothiodimetallates: the structure of $\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$

J.L. DAVIDSON, W. HARRISON, D.W.A. SHARP and G.A. SIM
Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (Grear Britain) (Received October 12th, 1972)

SUMMARY

$\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$ prepared by the reaction between hexafluoro-2-butyne and $\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2}$ contains an $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ cluster with an axial, axial orientation of organothio substituents about the cluster.

Binuclear compounds containing two organothio bridges between two metal atoms can potentially exist as various isomers depending upon the orientation of the organo substituent with respect to the $\mathrm{M}_{2} \mathrm{~S}_{2}$ cluster ${ }^{1-5}$. For a non-planar $\mathrm{M}_{2} \mathrm{~S}_{2}$ cluster and with equivalent substituents on each metal atom three isomers (Fig. 1a,b and c) are possible but (c) (axial, axial) has been precluded ${ }^{3}$ on steric grounds when a metal-metal bond is present. We now show that the axial, axial isomer can exist in some circumstances.

Fig. 1. Possible isomers for a non-planar $\mathrm{M}_{2} \mathrm{~S}_{2}$ cluster,
$\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2}{ }^{6}$ reacts with hexafluoro-2-butyne to give
$\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$, the structure of which has been elucidated by X-ray crystallographyThe complex crystallises in the space group Pnma with $a=10.918$ (4), $b=12.049(2), c=15.416(4) \AA, Z=4$. The analysis employed 1847 independent diffractometer intensities (Mo-K K_{α} radiation), and least-squares adjustment of the atomic parameters converged at $R=5.1 \%$. The molecular structure with some of the principal dimensions is shown in Fig.2. The molecule has crystallographically required C_{S} symmetry and approxi-

Fig.2. Molecular structure of $\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$.
mates very closely to $C_{2 \nu} \nu$. The Fe. . . Fe distance in the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$-ring is $3 \cdot 266(1) \AA$, and the $\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$ ' and $\mathrm{S}-\mathrm{Fe}-\mathrm{S}^{\prime}$ angles are $90.2(1)$ and $87.4(1)^{\circ}$. The $\mathrm{Fe}-\mathrm{CO}$ bonds trans to sulphur have a mean length of $1.816(4) \AA$, while those trans to carbon have a mean length of $1.840(6) \AA$. The iron and sulphur atoms deviate by $\pm 0.17 \AA$ from the mean plane of the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$-ring, and the fold about the $\mathrm{Fe} . . . \mathrm{Fe}$ 'line is 24°.

Because of the appreciable non-planarity of the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$-ring, it is possible to distinguish between axial and equatorial substituents on the sulphur atoms of the ring, and the molecule shown in Fig. 2 clearly corresponds to the axial, axial isomer (c).

It appears that the $\mathrm{Fe}-\mathrm{Fe}$ distance in this compound which does not require a metal-metal bond is sufficient to allow the axial, axial isomer. It dissolves in methylene chloride to give a solution which by ${ }^{19} \mathrm{~F}$ NMR spectroscopy contains two isomers. One of these has equivalent fluorines and by analogy with the structure of the solid is likely to have the axial, axial (c) structure; the other contains non-equivalent fluorines and is the axial, equatorial isomer (b). A dimetallated olefin has been previously described as resulting from the reaction between hexafluoro-2-butyne and methyl(triphenylphosphine) gold ${ }^{7}$.

It is of interest that $\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{SCF}_{3}\right]_{2}$ is primarily the anti (b) (axial, equatorial) isomer. [It was previously reported as being exclusively the anti isomer ${ }^{6}$ but it has now been found that the proportion of anti to $s y n$ isomers is $12 / 1$. As this compound will contain a metal-metal bond ${ }^{3}$ the syn isomer will probably be the equatorial, equatorial species (a).] As in previous studies ${ }^{1}$ substitution by triphenylphosphine causes a greater
favouring of the syn isomer. IR spectroscopy on the complexes $\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SCF}_{3}\right)_{2}$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SCF}_{3}\right)_{2}{ }^{6}$ (formed by the action of triphenylphosphine on $\left.\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{SCF}_{3}\right)_{2}\right)$ favours structures about the iron atoms with the phosphines trans to the metal-metal bond so that the phosphines are in the position giving rise to maximum steric interference with the trifluoromethyl groups. This steric interference will be greater with anaxial than with an equatorial trifluoromethyl group in agreement with the observed isomer preference.

Isomer ratio $\frac{\mathrm{Fe}_{2}(\mathrm{CO})_{5} \mathrm{PPh}_{3}\left(\mathrm{SCF}_{3}\right)_{2}}{S y n}=$
$\frac{4}{1}$

We thank Dr. F.C. Wilson for helpful discussion.

REFERENCES

1 L. Maresca, F. Greggio, G.S. Brignadello and G. Bor, Inorg. Chim. Acta, 5 (1971) 667.
2 G. Bor, J. Organometal Chem, 11 (1968) 195.
3 LF. Dahl and C.-H. Wei, Inorg. Chem, 2 (1969) 328.
4 M. Ahmad, R. Bruce and G. Knox, Z. Naturforsch, B 21 (1966) 289.
5 R.B. King, J, Amer. Chem. Soc., 84 (1962) 2460.
6 J.L. Davidson and D.W. A. Sharp, J. Chem Soc. Dalton, (1972) 107.
7 C.J. Gilmore and P. Woodward, Chem. Commun, (1971) 1233.
J. Organometal Chem, 46 (1972)

